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ABSTRACT 

A stochastic model has been proposed to characterize the teleseismic short per- 

iod P-wave signal variations observed within a Large Aperture Seismic Array (LASA). 

The model asserts that, in the frequency domain, the received signal is equal to some 

average signal multiplied by a random gain and phase.   Within a Montana LASA sub- 

array the mean value of the modulus squared of the random term can be roughly approx- 

imated by 1 + 0.18f3, where f is frequency.    For sensors drawn from the full LASA 

aperture the value is approximated by 1 + 2. Of2. 

An incoherent signal processing method, spectraforming, is introduced as a 

viable alternative to beamforming for obtaining spectral information at frequencies 

above about 1.0 Hz.    The spectraform is essentially the average power in sensors 

with a correction subtracted   for   background noise power contributions.    It is demon- 

strated that although beamforming will give more noise rejection than spectraforming 

the latter can be superior in terms of output signal to noise ratio when input signal 

variations between sensors are large. 

Expressions have been obtained for the signal power spectral density expected 

from various modes of processing.    Spectra from subarray beams and sums, spectra 

from array beams and beams of subarray sums, and spectraforms are all considered. 

Results show for example that the event power output from spectraforming, beamform- 

ing of individual sensors, and beamforming of subarray sums will decrease in that 

order.    In the case of actual events considered,the amounts of loss at 3. 0 Hz, relative 

to spectraforming, are about 10 and 20 dB respectively. 

Accepted for the Air Force 
Joseph R. Waterman,  Lt. Col., USAF 
Chief, Lincoln Laboratory Project Office 

in 



I.    INTRODUCTION 

We wish to discuss certain signal properties and signal processing capabilities 

of large arrays of seismometers.    The emphasis is upon short period vertical instru- 

ments and teleseismic P-wave signals although some of the concepts used can be utilized 

in other situations.   Figure 1 is a schematic diagram of an array, the earth structure 

near the array, and the incident signal.    The array has been shown as a collection of 

small subarrays since this is the configuration of the Large Aperture Seismic Array 

(LASA) in Montana and of the array currently under construction in Norway (NORSAR). 

Typically, the separation of instruments within a subarray is considerably less than that 

between subarrays. 

Each sensor of any seismic array will contain seismic and instrumental noise as 

well as output generated by the incident signal of interest.   For the present we assume 

the signal is sufficiently large so that the background noise can be neglected.   However, 

even with no background noise, the signals at different sensors are not identical.    One 

possible model for this phenomena is suggested by Figure 1.   Suppose that at some refer- 

ence plane beneath the array there is incident a plane wave with slowness a.   The motion 

at position r in that plane is s(t - a-r) where a-r is the dot product of slowness and posi- 

tion.    The output of the m     sensor of the n    subarray is not s(t - a-r     ).   One can ima- 

gine that the signal at sensor mn is obtained from s(t - a • r     ) by a cascade of three 

linear filters.   The first filter is a pure time delay, T      .   The second filter is common '      mn 

to all sensors and represents the average change in waveform between the reference 

plane and the surface.    The final filter represents perturbations which are specific to 

the particular sensor.    Let S     (f) be the Fourier transform of the signal at sensor mn 

after a time shift of a« r      +T      .   We then have - -mn       mn 
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Fig.   1.   Schematic of body wave incident upon a large seismic array. 



S      (f)   =   S(f)T(f) {1 + M      (f)} (1) mn L mnv '-1 w 

where S(f) is the transform of s(t), T is the average waveform change, and H (f) 

represents perturbations. The Ji cause the received signal to be only partially 

coherent across the array. 

The perturbations Jt      (f) are due to fixed deterministic variations in earth struc- 

ture and in that sense are not random.    However, it is generally quite impossible to 

predict the U      and we will find it convenient to consider them to be random variables ^ mn 

with zero expected value.    In general the H       are not independent of each other.   For 

example, signals observed within one of the LASA subarrays are more similar to each 

other than to signals drawn from other, more distant, subarrays.    One way to model 

this phenomenon is to assume that the correlation between the &        is some decreas- r mn 

ing function of the distance between the sensors involved.    Rather than consider this 

general case we have selected to model the situation in a way which is somewhat simpler 

and which uses the organization of large arrays into an array of subarrays.   Specifically 

one can expand S     (f) as ^       mnx 

S      (f)   =   S(f)T(f)U + H      (QHl+H (f)j (2) mn '        L mnv /J l nWJ x ' 

where the perturbation has been factored into two components.    The factors 1 + H 

account for gross differences between subarrays and the 1 + H      for differences within ° ' mn 

the subarray.    This is the model we shall use with the assumption that both the real 

and imaginary parts of all of the different H      and H   are uncorrelated and zero mean. 

We also define 



EM     (f)M*   (f) = 2a2(f), (3) mnv'   mnv ' w v ' 

EHn(f)Hn(f) = 2aA
2(f) (4) 

and 

E H     (f)H*   (f)  =  2ac
2(f) (5) rmv '  mn  ' S 

where E denotes mathematical expectation. 

The variety of different spectra which can be obtained from a large array is 

very great and it is important to understand their properties.   The following are three 

quantities which might be of interest in the absence of additive background noise. 

1. P(M,N,f):   Arithmetic mean power at frequency f of M sensors from each of 

N subarrays.    Thus, suppressing the explicit dependence on frequency, 

.       N    M 
P(M,N)   =   ^   E      £|Smnl2 (6) 

n=l m=l 

2. PR(M,N,f):   Power on a beam formed from M sensors from each of N subarrays. 

That is, 

PB(M,N)   =   SB(M,N)Sg(M,N) (7) 

where 
,      N   M 

SB(M,N)   -    m    Z.    S    Smn (8) 
n=l m=l 

is the beam. 

3.   P„R(M,N,f):   Power of a beam formed from straight sum traces from N sub- 

arrays.    The sum trace is the average of the waveforms from M instruments in 



a subarray.    In order to obtain an expression for this quantity we assume that 

Or   „ + T       = T    +a-Ar        where T    is the delay used for beamforming the sums and —mn       mn       n    — —mn n ' ° 

Ar        is the location of sensor mn relative to the center of subarray n.    Using this we 

have 

PSB(M,N,f)   =  SSB(M,N)SS*B(M,N) (9) 

where 

S    (M N)   =  -i-      S      E     S     e~i2Ttf(&'^mn* (10) 

n=l   m=l 

is the beam of subarray sums. 

Each of these quantities is a random variable.    In this report we obtain and utilize 

the mathematical expected value of all of these random variables. 

Although they must ultimately be considered, the distributions and/or higher 

moments of P, P~R, and PR are not given in this report.   We simply insert here a brief 

discussion concerning such distributions and point out the similarities between the 

seismic problem and other more common research problems.    In the body of this re- 

port we use only first and second moments of the H  , etc., and have used no assump- 

tions or relationships which are inconsistent with the most likely distributions which 

might be assumed in the future. 

It seems reasonable to assume that the H      and H   are caused by random in- mn n 3 

homogeneities in the earth beneath the array.    In fact one might attribute the H    to 

relatively deep structure and H      to local structure beneath the different subarrays. 

In this case the model of 1 + W       as a cascade of two filters with gain functions mn b 

1 + H   and 1 + H       is physically meaningful.    Assuming the H   and H       are caused by n mn      r J / & & n mn J 

similar phenomena it would seem that they should have similar probability distributions. 



However the 1 + M       are also caused by the same phenomena and should in some sense mn ' r 

also have the same distribution.    This excludes many possible distributions which might 

be analytically convenient.   For example, the 1 + H   cannot be Gaussian random vari- 

ables.   However they can be log normal.    That is if the log (1 + H ), etc. , are complex 

normal distributions then the requirement that all the distribution be similar can be 

satisfied.    Of course, other distributions do exist.   In a sense, similar considerations 

have led to the use of the log normal distribution in models of propagation through 

other random media.   For example, the propagation of laser beams through the atmos- 

phere and sound through the ocean under some conditions lead to these log normal dis- 

tributions. 

One might simplify the analysis by making other assumptions concerning the 

Ji    .    For example, suppose they are in fact Gaussian and that we consider 1 + M mn f   >      ff y mn 

1 + H   + H       rather than the factored form assumed above.    In this case the Gaussian n       mn 

assumption is quite satisfactory.    However, there is no obvious physical line of reason- 

ing which would lead to this situation where effects are additive. 

It is a relatively simple matter to introduce additive instrument and seismic back- 

ground noise into our model.    In general such noise can be correlated between instru- 

ments.    However, it is now current practice to separate instruments sufficiently so that 

such correlation is minimal at least at 1 Hz and above.    Thus we shall deal only with 

noise which is independent between sensors.    This in fact makes certain aspects of the 

analysis tractable which otherwise would not be.   We will consider the additive noise 

only in a later part of this report when we evaluate the relative efficiency of various 

signal processing methods for discrimination between earthquakes and explosions.   For 

the present we continue with a model which contains no such noise to obscure observations. 



II. EXPECTED POWER FROM BEAMS, BEAMS OF SUMS AND SENSORS 

The mathematical expected value of P(M,N) is the same as that of | S      Is. 

Thus we immediately obtain 

E{P(M,N)|S,T} = |ST|2 E{|l + Mmn|3} 

= |ST|2 (1 +2as). (11) 

It is assumed that S and T are constants and that the expectation is conditioned upon them. 

Using the alternative expression of equation (2) for S      gives 

E{P(M,N)|S,T}   -   |ST|2 (l+2aA
2)d+2as

2). (12) 

Finally if a single subarray is considered and H   as well as S, T is assumed known we 

have 

E{P(M,1)|S,T,H   }   =   |ST(1+H)|2 (1 + 2aQ
8 ). (13) 

The expected value of P„R(M>N) is slightly more difficult to obtain.   We first 

consider P„R(M,1) with S,T and H   all given.   In this case 

PQR(M,1)   =   <ST(1+Hn>l -   [(1+H    L**^, 
, LX ran' J 

m=l 
(14) 

Taking the expected value of this gives 

2as
2 

E{P„R(M,1)|S,T,H  }   =   |ST(1+H )|s (B   +^f) SB n (15) 

where 

B    =  G G* n n  n (16) 



and 

r 1   *J    -i2nf(a-Ar     ) 
Lr    -  T-;   E   e — —mn n       M       , 

m=l 
(17) 

If H   and H      are independent then n mn r 

2as
2 

E{PSB(M,l)|S,T,n]   =   |ST|S (l+2aA
2)(Bn + -j^-) (18) 

This expectation is conditioned on n only because the geometry of subarrays may vary 

and this will result in different B .    If PqR(M,l) is averaged over N subarrays then we 

get 
2°s E{PSB(M,l)|S,Tj   =   |ST|2 (l + 2aA

2)(B + ^-) (19) 

where 

-        1     N 

B  "  N    E, BN n=l 
(20) 

The complete expectation of P„R(M,N) is obtained as follows.   By substituting 

equation (2) into (10), (10) into (9), and taking expected values we obtain 

N       M 
E{P„R(M,N)|S,T}   = Jill2     Z       S {(1 + 2CTA

2
5,J SB (NM) j,k=l <t,m=l A      jk' 

(e-i2nf(a.(Artj-A_rmk))) (1 + ^ ^       (n) 

where 6 ., is the Kroneker delta.   This is considerably simplified by using definitions 

(16), (17) and (19) above as well as 

B  = 
1 

NM 
„      _       -i2nf(a»A_r     ) 

n=l   m=l 
(22) 



This gives 

E{PSB(M,N)|S,T]   =   |ST|5[B + -^-B + -   S MN    -2L- ]. (23) 
2G

A   -    2^s
2(l+2aA

2) 

Both B and B in equation (22) are subarray beam pattern effects.   B is the squared mag- 

nitude of the average complex gain of the subarrays and B is the average of the squared 

magnitudes of the individual subarray gains.    If all subarrays are identical then B = B. 

Expected values for P (M,N) are obtained by putting B   = B = 1 in all the expres- 

sions for { PSB(M, N)} .    Thus 

2a 2 

E{PB(M,l)|S,T,HnJ   =   |ST(1+Hn)|2(l+^- ), (24) 

2a 2 

E{PB(M,1)|S,T] =   |ST|S (l+2aA
2)(l+^f- ), (25) 

and 

2a A
2      2a2(l+2a2) 

E{PB(M,N)|S,T}   =   |ST|2[l+^-+       b MN £-]. (26) 



III.    ESTIMATION OF a2 , ag
3 AND o^. 

One way to estimate the subarray signal variation parameter a^ is to compare 

average power from sensors with average power from subarray beams.   From equations 

(11) and (25) one would expect the ratio to be 

ElP(M,N)|S,T}     _   . s.   , 2aS2  v (YJ. 
E{PB(M,iy|S,T] (1 + 2aS^ ' (1 +~W~} (27) 

Figure 2 shows a plot of observations of P(M,N)/PR(M,1) as measured using from 9 to 

12 sensors per subarray for 5 subarrays in LASA.    Thus P(M,N) is the average power 

from about 50 sensors and the PR(M,1) used was the average power of five subarray 

beams.    The spectra were obtained using the discrete Fourier transform of ten seconds 

of data sampled twenty times per second.   Possible effects of the frequency window will 

be discussed subsequently.    The events used were a large earthquake and a presumed 

underground explosion located 80 to 90 degrees from LASA.    The events are sufficiently 

large so that background seismic and instrument noise can be neglected. 

If the H      are caused by random inhomogeneities in the earth then the behavior 

of (Tc3 as a function of frequency must depend upon the statistical properties of these 

inhomogeneities.    There must be basic parameters such as characteristic size, per- 

haps normalized by wavelength, which determine the behavior of ac
2 as a function of 

frequency.    The same is true for a.2.   We have not yet investigated this area.   We 

have simply chosen to assume that cr 2 (f) = (CJ:)2.    Such an assumption appears to fit 

the data reasonably well but we have not yet attached any physical significance to the 

constant C„.    It may well be that some other function of frequency would give just 

as good a fit and have a better physical or theoretical basis. 

10 



Figure 2 shows theoretical values of E{P(M,N)| S,Tj/E[PB(M,l) | S,Tj for M=10 

and several values of CL     It appears that C„ in the range 0. 3 to 0. 4 gives a reasonable 

fit to the data.    The effect of different numbers of sensors in each subarray is small 

and the typical number 10 has been used. 

The variable a2 = E(M      M*   ) can be estimated using one element from each sub- v  mn  mn' * 

array of LASA.    The ratio of expected average power to expected beam power, obtained 

from equations (11) and (26) and using the relationship 

a2 =°A
3+as

2 +2°A
3aS2 ' (28) 

is 

E(P(1,N)|S,TJ 1+2cj2 

E{PB(l,N)|S,Tj :       1+2^     . (29) 

As  one might expect this is functionally the same as for choosing instruments from 

within a single subarray.   An array of one instrument per subarray acts as a large 

subarray.    The ratio P(1,N)/PR(1,N) has been calculated from a large bomb and earth- 

quake.    The powers, P, used were in both cases the average obtained using two dif- 

ferent sets of 21 sensors from LASA.    The data are shown in Figure 3.    The scatter is 

large but might be reduced by considering more events or using several other sets 

of 21 sensors.   Neither has been attempted.   Also the higher moments or distribution 

of the P, which would help to evaluate the scatter, have not been obtained at this time. 

An estimate of a3(f) could be obtained from each point on Figure 3.    At each 

frequency such estimates might be combined to obtain a final estimate of a2.   We have 

chosen not to do this but to assume that a2(f)» like a~2(f), is quadratic in frequency. 

The theoretical curves on Figure 3 are given by equation (29) with a2(f) = (Cf)2 .   For 

11 
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the purpose of continuing discussion of a specific situation we have chosen C = 1. 0 to 

be a good fit to the data.    It should be noted that if (Cf)2 is considerably larger than 

unity that the signal is almost incoherent and beamforming will give almost 1/N re- 

duction in signal power. 

If a2 and a^ are quadratic in frequency as assumed above then 

2    _ (C2-C 2)f2 / (1 + 2C 2f2) . (30) 

Thus a »2 is approximately quadratic in frequency only if 2Cc;
2f2 < 1.   Roughly this 

makes CT A
2 quadratic only up to about 2 Hz for the values of C, Cc we have estimated. 

This is somewhat bothersome since one might wish CT.
2
 to have a functional dependence 

on frequency which is the same as CT
2
 and CTC

2
 •    This difficulty has not been resolved 

at this time. 
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IV.   DISCUSSION OF RELATIVE POWER FOR SEVERAL DIFFERENT ARRAY OUTPUTS 

It has often been computationally expedient to consider only direct sum signals 

from large arrays.    The consequences of this are well known for the theoretical case 

of a plane wave.    However, we have just seen the extent to which signals in an array 

are not simple plane waves.    The variables CTq2 and a A
2 can be considered to characterize 

this phenomenon. 

Consider the spectra which might be obtained from a subarray direct sum and 

from the individual instruments of the subarray.    The ratio of the expected values of 

these quantities is obtained from equations (12) and (19) as 

E{P(M,1)|S,T} _    2a ' 

E{PSB(M,I)|S,T}M1+2CTS2)/(B + -M = (l+2ac
2)/(B + ^-) (31) 

where B is the average beam pattern effect of the subarrays used in the experiment. 

B would be the only effect in the case of perfect plane waves.    If B is small compared 

to 2a„2/M it is clear that the beam pattern will have little effect upon the observations. 

The gain B depends upon the sensor configurations in each subarray and the slow- 

ness vector a as well as frequency.   Figure 4 shows the value of -10 log B. as a func- 

tion of frequency and the angles of a in the first quadrant for a typical set of 12 elements 

in a subarray.    The magnitude of a has been fixed at 23 km/sec. which is close to that 

for both events studied in this report.   The function in other quadrants can be found to 

a good approximation by symmetry.    The function is very similar at other sites for 

frequency less than about three cycles.    For larger frequencies the shape is somewhat 

similar but at half of the subarrays the pattern is rotated by about thirty degrees.    The 

value of B(f) will certainly be less than the maximum B.(f).   By using Figure 4 with an 

14 
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angle East from North of 60° we will be able to show that the subarray beam pattern 

does not significantly affect observed spectra from LASA except at low frequencies. 

Figure 5 shows the average power of sensors in subarrays divided by the average 

power of straight sums for the two large events we have considered previously.   Several 

theoretical curves given by equation (31) are also shown.    One of these is for a 2 = 0. 

In this case the beam pattern predicts a very sudden loss of signal in the region from 

three to four Hertz.    This notch is not visible on the data shown and we have seen no 

evidence of it on any of our data.    The aQ
2 = 0 curve shown uses B.(f) as obtained from 

Figure 4 in a direction picked to give the least attenuation of high frequencies.    Curves 

are also shown for a ^ = (0. 3f)2 and fixed values of B.    It is clear that if the subarray 

beam predicts more than 10 db loss (B ^ 0.1) then the power on the subarray straight 

sum is very insensitive to the true value of B..   For 10 sensor subarrays from LASA 

it appears that the direct sum output power is determined more by a 2 than by B for 

frequencies greater than 2. 7 Hz.    It should be noted that this does depend on the value 

of M.    Larger M would cause B to have a greater impact.    However, for fixed subarray 

size, increasing M must reduce interelement spacing and probably result in a smaller 

effective CT„
2
.    Finally the theoretical ratio of equation (31) is shown in Figure 5 for 

C = 0. 3 and a reasonable value for B, obtained from Figure 4. 

Another quantity of interest might be the average power from the steered beams 

from subarrays.    Figure 6 shows the theoretical relationship of this quantity to both 

individual sensor average powers and to direct sum average powers.    The theoretical 

ratio of subarray beam powers to straight sum average powers is 

16 
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SB 

which is also given by 

ECPB(M.1)|S.T} |       to-   |    |       tog'J 

E{PQB(M,1)|S,T1   "     V    ~ riB+-"-|- <32) 

E{PR(M,1)|S,T] \    /E{PR(M,1)|S,T}\   /E{P(M,1)|S,T} 

E{PSB(M,1)|S,T}/    I E[P(M,1)|S,T}   / I E{PSR(M,1) | S, T}J 
(33) 

The inverse of the first term on the right is given by equation (27) and the second is 

given by equation (31).   All three terms have been shown on a dB scale on the figure 

with E{ P] / E{ PR} used in place of E{ PR} / E{ P) so that all have the same sign. 

The beam pattern effect for perfect plane waves is also shown.    If signals were plane 

waves then curve (1) would be at 0 dB and curves (2), (3) and (4) would coincide. 

It should be clear that the model we have developed can be used to predict array 

performance as a function of frequency for many modes of operation.    We complete 

this section with two more examples.    First consider the power on array beams formed 

from subarray beams and from subarray sums.    We assume that B = B and obtain the 

ratio 

E{PR(M,N)|S,Tj 2ag
2     ^      1 + 2a ^ 

E{PSB(M,N)|S,Tj M       [w      i+AaA M       |N     1 + 2CT /" 
(34) 

B + 2V/l    l+2GA 
| N"    1 +2o* 

from equations (23) and (26).    Observe that this is the same as equation (32) but with 
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2as
2/M multiplied by the array quantity (1 + 2CT.

2
 ) / (N (1 + 2g.2/N)).    This multipli- 

cative factor is always between 1/N and 1.   Thus this comparison will tend to make the 

subarray beam pattern effect somewhat stronger than when powers are compared without 

beamforming.    Of course this neglects any questions of statistical stability.    If a.3 =0 

then the multiplicative factor is 1/N and the reduction of the effective 2<jq2/M is greatest. 

Figure 7 shows equation (34) for the case M = 10, N = 21, C = 1.0, C„ = 0.3, and the 

nominal B we have used previously.    The value is controlled more by a-3 and a «2 

than by B for f >2. 7 Hz.    Note also that the curve does follow the beam pattern of a sub- 

array for somewhat higher frequencies than does equation (32)   shown on Figure 6. 

Finally we wish to consider the ratio of single sensor average power to the aver- 

age power of a full array beam using M sensors from each of N subarrays. This ratio, 

obtained from equations (11) and (26), can be written as 

E{P(M,N)|S,T} /l+2rr   z\    / 1 + 2CTg
2 

(35) 
E{PR(M,N)|S,T] 1 +2G

A' ]   1 1 +2aS 
N     /    V       ~W 

where 

/  N(l+2aA
2) \ 

M'   =   M — (36) 
\l + 2a/ /        • 

The first factor is that which would be obtained with ov2 - 0.    The second is due to the 

subarray but M has been increased to M'.    If a .3 =0 then M' = M.    Equation (35) is 

shown on Figure 7 for the same parameter values as equation (34).    The sum of these 

two would give the dB relationship between the power on a beam formed from direct sub- 

array sums and the average power on the individual instruments. 
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If there were any additive noise the use of 210 sensors (10 from each of 21 sub- 

arrays) would give about 23 dB of noise attenuation by beamforming.    Thus, it appears 

that beamforming of subarray straight sums would give no improvement in signal to 

noise ratio for frequencies above 3 Hz since the signal power on the beam would be 

down a similar amount from the average signal power on individual sensors.    This ob- 

servation is elaborated upon in a later section where both the mean and variance of ob- 

servations on the presence of noise are considered in detail. 
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FULL   ARRAY  BEAM vs INDIVIDUAL   SENSORS 

FULL   ARRAY   BEAM vs BEAM OF SUBARRAY SUMS 

Fig. 7. Loss of beam of 21 X 10 sensors relative to single sensor 
and of beam of 21 subarray sums of 10 sensors relative to beam of 
21 x 10 sensors vs frequency. 
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V.    IMPACT OF USING SAMPLED DATA AND TRUNCATED SIGNALS 

All of the theoretical expressions of the preceding sections assume we are deal- 

ing with the true spectra of continuous time functions.    In fact the short period data 

from large arrays is sampled, typically at 10 or 20 times per second, and only a finite 

interval of time is used to estimate spectra.    Sampling will introduce no fundamental 

difficulty so long as the data are band limited to the Nyquist interval.   All the data we 

have used were sampled at 20 times per second giving a Nyquist interval of ±10 Hz. 

The data are sharply low pass filtered with a corner at 5 Hz before sampling so that 

we need not consider this problem.    However, the effect of using finite data intervals 

must be considered in somewhat more detail before we can conclude that it is not truly 

significant.    Figure 8 shows typical data and intervals used for computing transforms. 

Suppose that x(t) is the waveform under consideration and that it has a Fourier 

transform X(f).    Let h(t) be a series of unit Dirac impulse functions located every At 

seconds in the interval which is to be used to estimate X(f).    All of our data is for At = 

0. 05.    The transform of h(t) is H(f).    Let the data interval contain p impulses and, with 

no loss of generality, assume the first impulse is located at t = -At(p-l)/2.    In this 

case 
CO 

Li/^\          Cu/*\   "i2nft,^       sin rrfpAt ,„„, H(f)   =       h(t)e dt   =   -: •£—   • (37) J sin nfAt v    ' 
-CO 

The transform which can be calculated is that of the product x(t)h(t).    It is true in general 

that the transform of a product is the convolution of the transforms.    Thus 

CO 

X(f)   =     Jx(v)H(f-v)dv (38) 
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Fig.  8.    Examples of data intervals used to compute spectra.    Signals 
are subarray F4 straight sums each normalized to peak values. 
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is the measured quantity.    The observation at f is a sum of contributions from all fre- 

quencies.    The observed power,   | X(f) | 2 , is of course the squared magnitude of such 

a sum. 

One would want H(f) to be a very peaked function around f = 0.    In that case X(f) 

is just a very local average of X(f).   However, this may not be the case if H(f) does 

not go to zero quickly enough.   This can be particularly troublesome if there is a region 

of frequencies where X(f) tends to be very large and one is attempting to measure X(f) 

in a region where it is very small.    Figure 9 shows results from an experiment designed 

to demonstrate that this latter phenomena has not significantly altered our data.    The 

figure shows average spectra from 21 subarray direct sums before and after filtering 

with a Butterworth filter with 3 dB corners at 3 Hz and 6 Hz.    It is clear that in the 3 

to 6 Hz range the spectra before and after are nearly identical.    This shows that in 

that band, even before filtering, no significant amount of observed power was intro- 

duced from lower frequency regions via the mechanism of equation (38) although the 

power in tiiose regions is large. 
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(a) Presumed explosion. 

Fig.  9.   Average power of 21 sensors before and after band pass filtering 
to 3.0 - 6.0 Hz. 
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VI.    SPECTRAFQRMING AS A SIGNAL PROCESSING METHOD FOR DISCRIMINATION 

We have thus far discussed large array signal processing of large events with no 

consideration of the purpose of the signal processing.    The large arrays have been 

constructed to aid in the detection and identification of underground nuclear explosions 

and it has been demonstrated, usually using beams formed from subarray sums, that 

many events can be correctly identified as earthquakes or explosions by the spectral 

shape in the short period band.   Briefly, for a given body wave magnitude the explosions 

tend to generate relatively more high frequency energy than the earthquakes.    This 

observation was made using beams of straight sums so the spectra considered were 

on the average given by our equation (26) where S is somehow the intrinsic event spec- 

trum.   The other factors are unknown.    If straight sums were replaced by steered 

subarrays then the output quantity would be larger for a given | S | 2.   Also, the dif- 

ferences between event types would be somewhat larger.   Finally consider the average 

spectrum of all of the sensors.   We shall call this spectraforming.    On the average, 

for a given | S| 2 this has the largest output of all and the differences between event 

types should also be largest.    Thus, in the absence of background noise, it would seem 

that spectraforming may be superior to beamforming for discrimination based upon 

short period spectra.    Note that this does not mean that the spectraform is a better or 

worse estimate of | S |  than is the spectrum of the beam.    It is just different. 

Unfortunately spectraforming does not reject additive background noise as well 

as does beamforming.    This is true even when corrections are made to remove the 

average contribution of the noise.    From this point of view beamforming is a superior 

processing method since it can look further down into the noise.   In the remainder of 

this report we consider the trade off between noise reduction and signal related power 
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for different processing methods.   We shall see that there are conditions when spectra- 

forming is definitely the superior processing method for discrimination. 

The notation of the preceding sections is somewhat cumbersome for some of the 

analysis to be done in the sequal.   We therefore will introduce a notation which does 

not specify the signal structure so completely.    Let K = NM where N is the number of 

subarrays and M is elements per subarray.    Let all sensors be singly indexed and let 

S, be the spectrum of the signal on the kth sensor.   Thus S      has been replaced by 

S. in our notation.    If Y. is the transform of the zero mean additive noise on sensor i k 1 

then 

X.(f)   -  S.(f) + Y.(i) (39) 

is the actual spectrum observed at sensor i.    In this case we assume the data interval 

is fixed so all these quantities are finite.   We assume noise at different sensors is 

independent.   For sensor spacings of three kilometers this is a good approximation for 

frequencies greater than 0. 7 Hz.    Larger separations are required at lower frequencies. 

We also assume that the real and imaginary parts of Y. are independent, that Y.(f) has 

zero mean, that 

EY.(f)Y*(f)   -   2ay
2(f), (40) 

and that Y. is independent of S. for any i, j. We also assume there exists a set of L com- 

plex random variables, Z., i = 1, .  . L which have the same distribution as Y. but are 

independent of each other and of all the Y. and S..    These Z. could be transforms of 

blocks of noise preceding the event arrival time and will be used to correct spectra- 

forming and beamforming spectra for average noise effects. 
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The spectraform power estimator which we will study is 

h) =| (| x,(WJ»J   • EJI/A*)   • <•"> 
The last term on the right is a correction introduced so that given the S. the expected 

A /N 

value of P(f) is what it would be with CTY 
= 0.    In this sense P(f) is unbiased.    The beam 

estimator for power is 

K 
PB(f) i   s x (f) 

K k-i  K 
(42) 

The last term is again a correction introduced so that given the S. the expected value 

A 
of PR(f) is the value with no noise present.    This correction term makes it convenient 

A A. 
to compare the value of PR and P for discrimination on the basis of their stability. 

That is, since both Pg and P are unbiased estimates,the one with the smaller standard 

deviation relative to its expected value is more desirable for discrimination.    Note 

that    E{PB|Sk, k=l, .  .  .   K} f E{P| Sk> k=l, .  .  .   K} except if all the St are equal. 

In this report we deal only with P and PR conditioned on the values of S,     k=l, . 

•*• e _ 
.  .   K.    Thus quantities such as the expected value of P and (P)3 are conditional.    Ulti- 

mately we must take expectations over the S, .    This appears to be feasible but has not 

yet been accomplished.    It will require that the distribution of the S, be specified or 

at least all moments up to the fourth be given. 
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VII.    CONDITIONAL MOMENTS AND STABILITY OF P„ AND P  r>  

The average power from all channels in the absence of noise is 

1 K 
P(f)   =    f    E   Sk(f)S*(f). 

k=l 

and the power of the average of the channels is 

K 

(43) 

PB(f)   - A    E   S (f) 
K k=l K 

(44) 

These are the same as equations (6) and (8) with the notation slightly changed.    It is 

easy to see that the expected value of P given P is 

E(P|P)   = P. 

and is the same as E{P| S, , k=l .  .  .  K].    This comes from expanding P, 

? = i & sksk 4 £ skYJ+1 £ si\ + i £ VJ 

and taking the conditional expected value 

(45) 

(46) 

E(P|P)   =  P + 0 + 0 + 2CTY
2
 - 2aY

z (47) 

Although this expected value is taken conditioned on all the S, it happens that the S, 

enter the result only as P.   Similarly 

K     K L 
?B =H k=l k?=l SkS£' + ^ + SkYk' + V*     " T^L    *Viz2    (48) 
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and taking expectations, 

2a/ 
E(PB|PB)   =   PB + 0 + 0 + ^ 

2a Y
2 

=   P 
13 (49) 

and E(PR|PR)   =   E(PR|S,, k = l, . 
B'   P/ B1   k' K). 

The conditional expectation E(PP | P) = E^l S, ,k = 1 .  .  .  K) can be obtained by 

squaring (46) and using the fact that several of the resulting terms have zero expected 

values, given the S..    For example the expected value of any term which is third order 

in Y, , Y*    Z, or Zf has zero expected value due to the symmetry of the assumed dis- 

tributions.    Also EY.Y,    =   EY*Y*   =   EZ.Z,    =   EZrZ?   =   0 since the amplitude and 

phase of Y,   (or Z, ) are independent and the phase is uniformly distributed over 2TT. 

The result is 

K 
E(P3|P) = F+^ (2av

2) + E    i     Z     Y.Y K K 
k=l 

k'k 8a Y
4 

(50) 

But 

»(K JiY^r 
s      (E(Y Y*))3 (E(Y Y*)3) 

(E(YkY*))    - — K K (51) 

and, because Y,  is complex Gaussian, it can be shown that 

E(YkY*)3   =  8aY
4 (52) 

Thus 
1       K 

K       =    YkYk k=l 
=   4ay

4 (1 + £) (53) 
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and similarly 

ii  L 

L    £   Vi =   4CTY
4
   (1 +£) (54) 

Substituting back gives 

4^ 4aY
4 „ 

E(PS|P)  =  Ps   +  -^—   + —jr-<1+£) (55) 

Finally, to obtain E(PB
S | P )   =   E(PgS | Sfc, k=l, 

I     K 
S

B   "  K   , ^ Sk' k=l 

which is equation (8) in new notation, and define 

1       K 

y   K   
E Yk • K k=i  K 

The variable y is zero mean Gaussian with 

2a Y
2 

Eyy* = -*-    . 

K) we recall that 

(56) 

(57) 

(58) 

We can now express PR, defined by equation (42), as 

1 L 

p
R =  |sR + y|2 - ~-    £    Z,Z* B 13 KL      -=l      I   I 

Squaring this and taking expected values gives 

E(PV|PB)   =   PB
2+2PB^+E|; 

8a 
* I 2 

K; 
Y    + 1 

L 

(59) 

^EL/=1Vn-   <60> 

But 

E|yy*| 
8ay

4 

(61) 
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and 

fl       L 
E \j      E    Z.Z* =  4a y

4 (1+J-) (62) 

so that 

4aY
3PR       4^v4 1 

E<V | PB)   =  PB
2 + —^   + I?- (1 +J; ) (63) 

It is now simple to obtain conditional variances of P and PR from equations (45), 

(49),  (55), and (63).    These are 

.     4       . 
1 V /      P V 

(64) 
4a, 4 

E{(P-P)2|Pj -£-      _P^_+ (!+£) 

and 
4CTY4    \ PB 1 1     1 

The quality of estimates of quantities such as power spectra is often measured 

by the stability of the estimate.    The stability is the ratio of the square of the expected 

value to the variance.    Intuitively it is clear that large stability means that the estimate 

is usually near to its mean value and, if the estimate is unbiased, near to the true 

value of the quantity being estimated.   When the estimate has a x3 distribution or if 

it can be approximated by a xs then the degrees of freedom is twice the stability and 

this can be used to generate confidence intervals.   For example, if stability is 2 for a 

X  variable then in the long run 80% of the observations will be in the interval from 0. 26 

to 1. 94 times the expected value.    If stability is increased to 4 then 80% of the time it 

will be in the interval 0. 43 to 1. 67 times the expected value. 

The stability for spectraforms is obtained from preceding relations and is 
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• >V 

We define the quantity 

* = f-s (67) 

which is equal to twice the ratio of expected signal power to expected noise power on a 

single sensor. That is, it is twice the signal to noise ratio on a single sensor. Using 

this 

"   "      ** jr— (68) 
4<r + (l+£)) 

The stability of the beamform power is 

P ? 

SB " 4aYVPB T ^ (69) 
•|^ + ^1+l] Ta7 

Uiinjj the definition 

g s P/PB (70) 

thi§ beaemes 

i 
I 

The expression 

'B ' f <72) 

M 



can be recognized as twice the signal to noise ratio on the beam of K sensors. 

It is somewhat intuitive but reasonable to assert that an unbiased estimate with 

greater stability will be superior for discrimination purposes.   We therefore compare 

••V A. 

P and PR on that basis. For this purpose it is convenient to assume L = co. This is 

not essential but does remove one variable whose effect, in principle, can be made 

vanishingly small.    In this case s will be larger than sR if 

K  >   g2   / (r + 1 - rg). (73) 

Figure 10 shows the region of K,g plane where beamforming is less stable for several 

different values of r.    Given K and r one can determine the minimum g which will make 

spectraforming the superior procedure.    One can then judge from equation (35) and 

others of previous sections if it is reasonable to anticipate a value of g which will be 

larger than this.    Of course this approach assumes, incorrectly, that P and PR always 

achieve their expected value.    Consideration of the more realistic case when P and PR 

are treated completely as random variables is defered to a future report. 

It is not satisfactory to know which of the processing methods is superior but it is 

important to know if either is actually satisfactory.    For example, if beamforming is 

superior to spectraforming for some set of parameters but it has stability 0.1 it is 

not likely that the measurement can be of much value for discrimination purposes.    To 

determine if an estimator might be satisfactory we must actually consider its stability. 

Figures 11 and 12 show the stability achieved by beamforming and spectraforming as 

a function of various parameters.    In the case of beamforming the stability is a simple 

function of the signal to noise parameter rR = Kr/g.   For spectraforming the stability 

is a function of K and r independently and has been shown as a contour map of s. 
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Fig.  12.   Stability of spectraform as a function of number of sensors, 
K, and 1/2 (signal to noise ratio on a single sensor), r. 
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Examples were given previously of the 80% confidence intervals of xa random 

variables with stabilities of 2 and 4.   We shall continue our discussion utilizing these 

two values as marginally acceptable stability values for a spectral estimate which 

might be applied for discrimination.    This decision is somewhat arbitrary.    Our further 

discussions could be continued with other values of stability and the specific results 

would be changed.    It is hoped that minimum stabilities of 2 or 4 represent realistic 

limits and thus lead to correct conclusions. 

We now also limit the discussion to K=210 (corresponding to 10 sensors from each 

of the 21 LASA subarrays) and K=21 (one sensor from each subarray).    These restric- 

tions allow us to reach specific conclusions about reasonably interesting specific cases 

and at the same time demonstrate the analysis which could be done for any specific 

case of interest. 

Consider the case of 10 sensors from each of 21 subarrays.   From Figure 12 or 

equation (68) we see that r s 0. 22 assures s a2 and r ^ .32 for s^4.    From Figure 11 

or equation (71) we observe that Kr/g a 8. 9 assures sR ^ 2 and Kr/g ^ 17 for sR^ 4 so, 

with K=210, we have r/g ^ 0.042, and r/g £ 0.081 respectively.   Now, assuming  that 

g behaves as E{P|S,T}/E[PR|S,T}, which was determined for LASA as a function of 

frequency in an earlier section, we can determine that value of r which is required to 

give satisfactory stability for a beamforming power spectral estimate.    Figure 7 showed 

g in dB for the case at hand.    It has been redrawn on a linear scale on Figure 13.    We 

now note that if r < 0. 22 and f > 1. 6 Hz then r/g < 0. 042.    Thus if f > 1. 6 Hz then 

spectraforming can achieve stability 2 with r = 0. 22 but beamforming requires a larger 

signal to noise factor.    In that sense spectraforming will be superior to beamforming 

for f > 1. 6Hz if a stability factor of 2 is satisfactory.    If a stability factor of 4 is re- 
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quired then spectraforming will achieve it with r s 0. 32 and will be superior to beam- 

forming if f £ 1.3 Hz.    In either case if we are in the region of spectraforming superiority 

then this cannot be changed by increasing r.    This is clear from Figure 10 since in- 

creasing r causes the separation lines to be even lower on the figure. 

Now suppose only one sensor is used from each subarray.   Nominal g for LASA 

has been shown on Figure 13.    Using this we determine that spectraforming will be 

superior for f s 1. 7 Hz if a stability of 2 is satisfactory and f s 1. 3 if a stability of 4 

is required. 

The preceding discussion has dealt with spectraforming and beamforming.    It is 

a simple matter to use the same methods to compare spectraforming and beams made 

from subarray straight sums.    The only difference is that g(f) is changed and is larger 

by the amount indicated by the curves on Figure 7.   Thus for beamforming of subarray 

sums spectraforming will become the superior method at even lower frequencies.   For 

example, g at f = 1. 2 is about what it was at f = 1.6 for beamforming 210 individual 

sensors.    This means that if a stability of 2 is satisfactory then spectraforming will be 

superior for f £ 1.2.   Similarly if stability 4 is required f s 1. 05 will make spectra- 

forming superior. 

The impact of using reasonable but less than perfect estimates of the noise spectra 

(L^ffi) could be included in the above discussion.    This would not change the general 

conclusion that, as frequency increased, spectraforming becomes the superior pro- 

cessing method some place in the range 1.0^ f=s 2.0Hz. 
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VIII.    OBSERVED SIGNAL TO NOISE RATIOS 

In the previous section we discussed signal processing as a function of r, which 

is twice the signal to noise ratio on a single sensor.    It is of interest to know what values 

of r might be achieved for events of different magnitudes.    This would allow one, for 

example, to determine the lowest magnitude for which meaningful data at some fre- 

quency, f, might be obtained.   We briefly discuss this in this section.    The data are 

limited and are at best only roughly indicative of what might be obtained for a large 

number of events.    Some points ignored include possible variation of spectral shape 

with magnitude, time variations in noise levels, actual achievable stability in noise 

power estimates, and the fact that the actual use of the data might change stability 

requirements considerably.   We consider only the case of 21 subarrays of 10 sensors 

and assume that a stability factor of 2 is satisfactory.   Thus, for high frequencies, we 

wish to know at what magnitude we obtain r £ 0. 22 which is equivalent to a signal to 

noise ratio less than or equal to -9.6 dB.   We do not discuss performance below about 

1. 0 Hz where beamforming or optimal linear combining will yield results superior to 

spectraforming. 

Figure 14 shows spectra for the two large events we have used previously.    The 

noise spectra were obtained as the average power of 21 sensors for a 10 second inter- 

val just before the event.   The average power on the same sensors is shown for the 

event plus noise interval.       The difference in dB is also shown on the figure.    If the 

noise spectrum is many dB down from the sum of signal and noise then the signal plus 

noise spectrum is essentially the signal spectrum.   Thus for both of these events 

the signal plus noise to noise ratio can be taken as the signal to noise ratio.    Clearly 

there is no signal to noise problem for either of these events in the range 1. 0 to 5. 0 Hz. 
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Suppose we are interested in using event spectra up to 3. 0 Hz.   At this frequency 

we can use the data if spectraforming is done and the signal to noise ratio is at least 

-9. 6 dB.   At 3. 0 Hz the earthquake and explosion at hand have signal to noise ratios 

of about 25 and 20 dB respectively.    This means that the signal power could be reduced 

by about 35 and 30 dB respectively and still give a stability factor of 2.    But 35 and 30 

dB are equivalent to 1. 75 and 1.5 magnitude units if event sizes are scaled with no 

spectral changes.    Thus we would expect to get useful data up to 3 Hz for an earthquake 

with m,   > 4. 65 and an explosion with m,   > 4. 2.    At 2. 0 Hz the SNR is 8 to 10 dB 
b b 

higher so data should be useful for events another 0. 5 magnitude units smaller. 

Data similar to that on Figure 14 has been obtained for two somewhat smaller 

events and is shown on Figure 15.    It appears that the SNR at 3 Hz is about 10 dB for 

the presumed explosion and (perhaps optimistically) -3 dB for the earthquake.    This 

implies we can operate down to m, =" 4. 2 for explosions and m, =* 4. 8 for earthquakes. 

Those numbers are in suprisingly good agreement with those above considering all of 

the random factors involved.    Again at 2. 0 Hz these figures can be reduced by 0. 5 

magnitude units or more. 
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Fig.   15.    Spectra of noise and of signal plus noise,    (a) Earthquake with 
muj = 5. 1.    (b) Presumed explosion with m^ = 5. 2. 
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IX.   DISCUSSION AND CONCLUSION 

The theoretical analysis and the data we have discussed suggest that it is possible 

to obtain useful spectral information for teleseismic P-waves at frequencies as large 

as 3. 0 Hz for events in the range 4. 0 ^ m,  ^ 4. 5.    This assumes that spectraforming 

is done to obtain spectra for frequencies above, say, 1. 0 Hz. The choice of spectra- 

forming even down to 1. 0 Hz and somewhat below is acceptable since if spectraforming 

gives satisfactory spectra in the range 2. 0 to 3. 0 Hz it will also in the 1. 0 to 2. 0 Hz 

range because the SNR is much higher there.   Spectraforming will be less successful 

much below 1. 0 Hz since signal variations between sensors will not be very large.    In 

that case the noise rejection power of beamforming or some other linear processing 

method would probably give a significant advantage over spectraforms.    Of course one 

must recall the problem that at frequencies of 0. 2 to 0. 5 Hz the noise is not independent 

between sensors so beamforming cannot normally achieve as much noise reduction as 

at higher frequencies.    In general in this report we have not considered alternative 

signal processing methods at these lower frequencies. 

In many respects the material in this report is exploratory and preliminary.   As 

such it leaves several partially explored areas for further development.   We conclude 

this report by mentioning some of the remaining research which might be undertaken. 

A statistical model for the generation of seismic signal variations has been sug- 

gested and partially analyzed.    This model should be investigated further.    This should 

include inquiries into the physical source of signal variations as well as more statistical 

analysis.    For example the physics should be used to help choose the frequency depen- 

dence of parameters such as cr2(f) and the form of the distribution of the M      ,   Once 

the distribution of the W       is fixed, perhaps log normal as suggested in the introduc- 
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tion, then the theoretical comparison of alternative processing schemes can be com- 

pleted. 

Spectraforming can be used to obtain spectra at high frequencies even for rela- 

tively small teleseismic events.   However, these same events may cause difficulties 

in the low frequency band from, say, 0. 2 to 0. 8 Hz.    If one wishes to obtain meaning- 

ful spectral information over as wide a band as possible, even for small events, then 

methods for obtaining improved spectral estimates in this low frequency band should 

be carefully considered.    It may be a crucial region for discrimination. 

Suppose that reasonably stable estimates of event power as a function of frequency 

can be obtained in the range from 0. 3 to 3. 0 Hz even for events in the magnitude range 

4. 0 ^ m,  ^ 4. 5.    The potential utilization of such data for discrimination should be 

more thoroughly investigated than it has in the past.   Discriminants should, if possible, 

be based upon differences which can be predicted using theoretical models of earth- 

quake and explosion signal generation.    Discriminants not supported by a theoretical 

model and carefully tailored to available data should be avoided if possible. 

Finally, when it has been determined how relatively broadband short period 

spectral information might be used for discrimination in the 4. 0 to 4. 5 body wave magni- 

tude range the specific proposed method must be tested with a nontrivial quantity of data. 

The specific signal processing methods and discrimination rules must be identified and 

such a test conducted.    This assumes that a procedure potentially superior to beam- 

forming of subarray straight sums and using the Lincoln Laboratory spectral ratio 

with those beams can be found. 

46 



UNCLASSIFIED 

Security Classification 

DOCUMENT CONTROL DATA - R&D 
(Security classilication of title,  body of abstract and indexing annotation must be entered when the overall report is classified) 

1.    ORIGINATING   ACTIVITY  (Corporate author) 

Lincoln Laboratory, M.I.T. 

2a.     REPORT   SECURITY    CLASSIFICATION 

Unclassified 
2b.    GROUP 

None 
3.     REPORT   TITLE 

Processing a Partially Coherent Large Seismic Array for Discrimination 

4.    DESCRIPTIVE   NOTES   (Type ol report and inclusive dates) 

Technical Note 

5.    AUTHOR(S)   (Last name,  first name,  initial) 

Lac os s, Richard T. and Kuster, Guy T. 

6.     REPORT   DATE 

27 November 1970 
7a.     TOTAL    NO.   OF    PAGES 

52 

76.     NO.  OF   REFS 

None 

8a.     CONTRACT   OR   GRANT   NO.    F19628-70-C-0230 

b.   PROJECT NO. ARPA Order 512 

9a.     ORIGINATOR'S   REPORT   NUMBER(S) 

Technical Note 1970-30 

9b.    OTHER   REPORT   NO(S)   (Any other numbers that may be 
assigned this report) 

ESD-TR-70-353 

10.     AVAIL ABILITY/LIMITATION    NOTICES 

This document has been approved for public release and sale; its distribution is unlimited. 

II.    SUPPLEMENTARY   NOTES 

None 

12.    SPONSORING   MILITARY    ACTIVITY 

Advanced Research Projects Agency, 
Department of Defense 

13. ABSTRACT 

A stochastic model has been proposed to characterize the teleseismic short period P-wave signal variations 
observed within a Large Aperture Seismic Array (LASA).    The model asserts that, in the frequency domain, the 
received signal is equal to some average signal multiplied by a random gain and phase.    Within a Montana LASA 
subarray the mean value of the modulus squared of the random term can be roughly approximated by 1 + 0.18f^, 
where f is frequency.    For sensors drawn from the full LASA aperture the value is approximated by 1 + 2.0f . 

An incoherent signal processing method, spectraforming, is introduced as a viable alternative to beamforming 
for obtaining spectral information at frequencies above about 1.0 Hz.   The spectraform is essentially the average 
power in sensors with a correction subtracted for background noise power contributions.   It is demonstrated 
that, although beamforming will give more noise rejection than spectraforming, the latter can be superior in 
terms of output signal to noise ratio when input signal variations between sensors are large. 

Expressions have been obtained for the signal power spectral density expected from various modes of proc- 
essing.   Spectra from subarray beams and sums, spectra from array beams and beams of subarray sums, and 
spectraforms are all considered.   Results show for example that the event power output from spectraforming, 
beamforming of individual sensors, and beamforming of subarray sums will decrease in that order.    In the 
case of actual events considered the amounts of loss at 3.0 Hz, relative to spectraforming, are about 10 and 
20 dB, respectively. 

14. KEY   WORDS 

LASA seismometers spectraforming 

47 UNCLASSIFIED 
Security Classification 


